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Abstract 
 
The spreading of a droplet of a liquid on a smooth solid surface is often described by the 
Hoffman-de Gennes law, which relates the edge speed, ve, to the dynamic and equilibrium contact 
angles θ and θe by ve ∝θ(θ2 -θe

2 ). When the liquid wets the surface completely and the 
equilibrium contact angle vanishes, the edge speed is proportional to the cube of the dynamic 
contact angle. When the droplets are non-volatile this law gives rise to simple power laws with 
time for the contact angle and other parameters in both the capillary and gravity dominated 
regimes. On a textured surface the equilibrium state of a droplet is strongly modified due to the 
amplification of the surface chemistry induced tendencies by the topography. The most common 
example is the conversion of hydrophobicity into superhydrophobicity. However, when the 
surface chemistry favors partial wetting, topography can result in a droplet spreading completely. 
A further, frequently over-looked consequence of topography is that the rate at which an 
out-of-equilibrium droplet spreads should also be modified. In this report, we review ideas related 
to the idea of topography induced wetting and consider how this may relate to dynamic wetting 
and the rate of droplet spreading. We consider the effect of the Wenzel and Cassie-Baxter 
equations on the driving forces and discuss how these may modify power-laws for spreading. We 
relate the ideas to both the hydrodynamic viscous dissipation model and the molecular-kinetic 
theory of spreading. This suggests roughness and solid surface fraction modified Hoffman-de 
Gennes laws relating the edge speed to the dynamic and equilibrium contact angle. We also 
consider the spreading of small droplets and stripes of non-volatile liquids in the capillary regime 
and large droplets in the gravity regime. In the case of small non-volatile droplets spreading 
completely, a roughness modified Tanner’s law giving the dependence of dynamic contact angle 
on time is presented. We review existing data for the spreading of small droplets of 
polydimethylsiloxane oil on surfaces decorated with micro-posts. On these surfaces, the initial 
droplet spreads with an approximately constant volume  and the edge speed-dynamic contact 
angle relationship follows a power law ve∝θ p. As the surface texture becomes stronger the 
exponent from p=3 towards p=1 in agreement with a Wenzel roughness driven spreading and a 
roughness modified Hoffman-de Genne’s power law. Finally, we suggest that when a droplet 
spreads to a final partial wetting state on a rough surface, it approaches its Wenzel equilibrium 
contact angle in an exponential manner with a time constant dependent on roughness. 
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1. Introduction 

A droplet deposited onto a solid substrate will rapidly adopt a shape determined by the 
forces due to surface tension and gravity. At equilibrium at the contact line it will also locally 
obey Young’s law, cosθe=(γSV – γSL)/γLV, where θe is the equilibrium contact angle and the γij are 
the interfacial tensions between the solid, liquid and vapor interfaces [1,2]. However, when first 
deposited, a droplet is far from equilibrium and so the contact angle has a dynamic value θ, which 
evolves with time, t. On a smooth and flat surface the characteristic speed at which this evolution 
occurs is given by v*=γLV/η whereη is the viscosity of the liquid; this suggests defining a 
non-dimensional capillary number Ca=ve/v

*. Indeed, from studies of silicone oils displacing air in 
glass capillaries Hoffman had suggested that for complete wetting systems with θe=0o the 
dynamic contact angle was a universal function of the capillary number [3,4] and Voinov had 
shown that θ∝Ca1/3 could fit the low velocity data [5]. In the case of a small droplet of 
characteristic size less than the capillary length, κ-1=(γLV//ρg)1/2 where ρ is the density of the 
liquid and g=9.81 m s-2 is the acceleration due to gravity, the associated characteristic time for 
spreading is τ*=κ-1/v*. A simple view of spreading of a small droplet is that the driving force per 
unit length of contact line is given by the out-of-balance surface tension and gravity forces 
described by γLV (cosθe–cosθ), and the spreading is resisted by viscous forces ∝ηve/θ [6]. This 
hydrodynamic approach immediately suggests that ve∝ v*θ(cosθe–cosθ), which in the small angle 
approximation gives the Hoffman-de Gennes law ve∝ θ(θ2−θe

2). The simplicity of this result 
conceals the fact that a no-slip boundary condition in the fluid mechanics of the problem leads to 
a force singularity [7-9]. 

 
A particularly simple experimental situation is the spreading of a small droplet of a 

non-volatile liquid on a surface it completely wets. Using the assumption of a small droplet 
spreading with a spherical cap shape and constant volume, the Hoffman-de Gennes law predicts a 
simple power law relationship for the dynamic contact angle θ∝(t+to)

-3/10 where to is a constant 
dependent on droplet volume and initial state; this power law is commonly referred to as 
Tanner’s law, after the author who first derived it from the Navier-Stokes equations and 
experimentally confirmed it for the droplet spreading problem [10]. The corresponding power 
law for the radius, rc, of the spherical cap is rc∝(t+to)

1/10. These power laws have been extensively 
investigated experimentally using small droplets of polydimethylsiloxane (PDMS) on silicon and 
glass substrates and found to be accurate descriptions of the data [1,2]. In fact, the small angle 
approximation is usually very accurate up to contact angles of ∼40o and can describe data with 
contact angles as high as 60o due to the cosine expansion using even powers [11]. This type of 
approach has also been used to describe the spreading of small stripes with circular arc 
cross-sections, where a power law θ∝(t+to)

-2/7, corresponding to rc∝(t+to)
1/7, was both predicted 

and observed [10, 12]; a result of practical importance in screen printing [13]. The hydrodynamic 
approaches also predict that the spreading of large droplets/puddles of liquids in the gravity 
regime will follow a power law of rc∝(t+to)

1/8 [14-16]. An alternative to the hydrodynamic view 
is to model droplet motion on the basis of the adsorption and desorption of molecules within the 
contact line region [17-19]. In this molecular-kinetic theory (MKT) the driving force remains a 
consequence of the out-of-balance interfacial tension forces γLV(cosθe–cosθ), although the 
Hoffman-de Gennes law is no longer predicted in the small angle limit. 

 
Spreading on smooth surfaces is a well-characterized situation and one that is accessible to 



study using simple droplet experiments. There is also a significant body of literature on the 
wetting of chemically patterned surfaces (for reviews see [20, 21]). One further question that 
naturally arises is how spreading might depend on surface topography. Surface topography is a 
factor in static wetting that has been extensively studied in recent years particularly because of 
the ability of high aspect ratio hydrophobic surface features to cause liquids to bridge between 
surface asperities and effectively cause a droplet to be suspended on the surface. These 
superhydrophobic surfaces originally came to prominence as self-cleaning and super-water 
repellent surfaces [22, 23], but can now be created using a wide range of materials approaches 
[24]. Often the behavior of droplets on these surfaces is well-described by the Cassie-Baxter 
equation whose fundamental topographic control parameter is the solid surface fraction, ϕs 
[25-29]. Less well-studied has been the effect of a rough hydrophilic surface to cause droplets to 
spread on surfaces on which they would normally form droplets. These super-wetting and 
hemi-wicking situations are a consequence of Wenzel’s equation whose controlling topographic 
parameter is the surface roughness, rs [30-32]. In these topographic cases with textured surfaces, 
the equilibrium contact angle, θT, is no longer that described by Young’s law, but is one 
dependent on both the topography and the surface chemistry, e.g. θT(rs, ϕs, θe). Since at 
equilibrium the contact line ceases to move, the driving force for spreading can be expected to be 
γLV (cosθT–cosθ) and so itself depend on topography [33]. Our previous work has suggested that 
such an effect can have dramatic consequences for both the Hoffman-de Gennes and Tanner laws 
[34, 35]. 

 
In this report, we consider how surface texture might alter dynamic wetting. We begin by 

reviewing basic concepts from the statics of wetting and the Wenzel and Cassie-Baxter equations, 
including how this alters the conditions for a vanishing contact angle. We then consider how the 
topography modified driving force could alter the hydrodynamic model and molecular-kinetic 
theory of dynamic wetting. As part of these considerations, we take a simple dimensional analysis 
view to consider spreading of small droplets and stripes driven by capillary forces, and of large 
droplets with spreading driven by gravity. Finally, we review experiments for topography driven 
spreading of PDMS droplets on lithographically produced arrays of microposts [34, 35]. 

2. Topography and Static Wetting 

2.1 Surface Roughness and Solid Surface Area Fraction 

Two of the key concepts relating to topography in static wetting are surface roughness and 
solid surface fraction. Surface roughness, rs, is usually defined as the ratio of actual solid surface 
area to the planar projection of the solids surface area. The surface area fraction, ϕi, of a solid of 
surface chemistry type i with a Young’s law contact angle θi is usually defined as the area of that 
type divided by the total surface area. However, these simple definitions can easily lead to 
ambiguities and do not emphasize the fact that they can change in value across a surface or that, 
in terms of droplets, it is their values at the contact line that determine local equilibrium [36]. By 
considering changes in surface free energy local to the contact line it has been shown that the 
roughness and solid surface area fractions can be defined as local differential variables in the 
proximity of the three-phase contact line, x,  
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where ∆Awetted is a small change in wetted area that is sampled by a three-phase contact line and 
∆Ap is the planar projection of that change. The corresponding definition of solid surface area 



fraction for a solid of surface type i is,  
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where ∆Ai(x) is the change in wetted area of type i that can be sampled by a small three-phase 
contact line change ∆AT(x)=∆A1(x)+∆A2(x) and the surface has been assumed to be composed of 
two types. Using these definitions and setting the surface free energy change due to a small 
advance at the contact line to zero gives rise to local forms of the Wenzel and Cassie-Baxter 
equations (Fig. 1) [36], 
 
 )(cos)()(cos xxrx esW θθ =  (3) 

 )(cos)()(cos)()(cos 2211 xxxxxCB θϕθϕθ +=  (4) 

where θe(x), θ1(x) and θ2(x) each satisfy Young’s law and the possibility that the surface 
chemistry (via the interfacial tensions) can vary across a surface has been indicated by the 
dependence on location, x. More complex cases involving both changes in surface roughness and 
surface area fractions could be considered using the same approach, but these are not dealt with 
in this report. 
 

 

 
 
2.2 Surface Roughness Induced Wetting  

Not all liquids adopt an equilibrium droplet shape with a well-defined contact angle when 
deposited on a smooth and flat solid surface. Imagine a film of liquid advancing on a solid 
surface over a small additional area ∆A(x). The advancing liquid replaces a solid-vapor interface 
with a solid-liquid interface and so changes the surface free energy by (γSL – γSV)∆A(x) and at the 
same time the film of liquid has an increase in its liquid-vapor surface area so increasing the 
surface free energy by an additional γLV∆A (x) (Fig.2a); the overall change in surface free energy 
is ∆F(x)=(γSL – γSV+γLV )∆A(x). If this advance reduces the surface energy the advance will 
continue until the surface is entirely wetted. Thus, the condition for complete wetting of a smooth 
and flat surface is that the spreading power, S, defined as S=(γSV -γSL-γLV ) should be positive.  

Figure 1 Changes in interfacial areas as the leading edge of a droplet advances by a small 
area, ∆A(x), across a) a rough surface and b) a composite surface of two types. 



 

 
 

When the spreading power is negative, so that a non-zero equilibrium contact angle exists, the 
spreading power can be written as S=(cosθe-1)γLV by using Young’s law. On a rough surface, the 
argument can be repeated, but the roughness factor alters the contribution to the surface free 
energy change caused by replacing the solid-vapor interface by a solid-liquid interface (Fig. 2b). 
As a consequence, the condition for complete wetting becomes that SW(r)=rs(γSV -γSL)-γLV  should 
be positive. When the spreading power is negative, so that a non-zero equilibrium contact angle 
exists, the spreading power can be written as, 
 
 ( ) LVWsW rS γθ 1cos)( −=  (5) 
 
by using Wenzel’s equation (eq. 3).  
 

One immediate consequence of eq. (3) and eq. (5) is that liquids that would form partially 
wetting droplets with contact angles below 90o on a smooth solid surface of a given surface 
chemistry will spread further and display lower contact angles and in some cases, these droplets 
will not stop spreading and will eventually spread across the entire surface. Both of these 
conclusions have been confirmed experimentally [32]. Figure 3 shows the effect on the observed 
contact angle of changing the heights of polymer (SU-8 photoresist) microposts on a 
lithographically surface; the horizontal axis shows the observed contact angle on a smooth and 
flat surface of SU-8. These surfaces were composed of square lattices of 15 µm diameter 
cylindrical pillars with a 30 µm lattice parameter in a polymer photoresist (inset Fig. 3). For 
droplets of water, the effect of the surface structure is to increase the contact angle due to the 
inability of the water to penetrate between the posts, thus giving a Cassie-Baxter 
superhydrophobic effect. However, for formamide the effect of surface structure is to reduce the 
observed contact angle and for liquids with even lower contact angles on the flat SU-8, the effect 
is to completely spread out and imbibe the liquid. For these liquids, topography reinforces the 
tendency towards wetting arising from the surface chemistry and it can be said to be driving the 
spreading. 

Figure 2 Changes in interfacial areas as a film of liquid advances by a small area across a) a 
flat and smooth surface, b) a rough surface and c) a composite surface of two types 
of surface, and d) shows the effect of a liquid advancing within the texture 
(hemi-wicking). In cases c) and d) the true area is related to the planar projection 
of area by  ∆A(x)=rs(x)∆Ap(x), where rs(x) is the local roughness factor. 



 

On a composite Cassie-Baxter surface consisting of two surface types, the surface free 
energy change caused by replacing the solid-vapor interface across one period of the surface by a 
solid-liquid interface also changes the spreading power (Fig. 2c). When the spreading power is 
negative, so that a non-zero equilibrium contact angle exists, the spreading power can be written 
as, 
 ( ) LVCBCBS γθϕϕ 1cos),( 21 −=  (6) 

 
Another situation, called hemi-wicking, can occur in which the topography drives a 

complete imbibition of a droplet by the surface. In this case the liquid spreads within the texture 
of the surface, but does not cover the tops of the asperities (Fig. 2d). In the simple case of flat 
topped surface features, Quéré et al have shown that the condition for the liquid to spontaneously 
advance within the surface texture is [37, 38], 
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which can be written as a hemi-wicking spreading power, 
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This condition also implies that hemi-wicking will not occur provided, 

Figure 3  Contact angles for a range of liquids on a textured SU-8 
surface. The inset shows scanning electron microscope images 
of the lithographically structured surfaces showing a square 
lattice of 15 µm diameter cylindrical pillars with a 30 µm 
lattice parameter (view of a field of pillars and a close-up view 
of the pillars). (Reprinted fig. 2 from ref. 32. Copyright the 
Royal Society of Chemistry 2004). 
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2.3 Solid-Liquid Composite Surface Induced Wetting  

The Cassie-Baxter equation is commonly used to explain the enhancement of partial 
wetting into superhydrophobicity. A simple view is to imagine a post type surface structure with 
a droplet only able to advance across the tops of the posts and bridge across the gaps between 
them. Effectively in eq. (4), θ1(x) is the Young’s law contact angle, θe, for the solid and θ2=180o 
is the contact angle of the liquid in contact with air. At the same time the surface area fraction for 
the solid is ϕs and for the gaps between the posts the area fraction is (1-ϕs), thus giving, 
 
 ( )sesCB ϕθϕθ −−= 1coscos  (10) 

 
However, we can also imagine an alternative situation in which a surface has been subject to 
hemi-wicking and a droplet then advances across the tops of the solid posts and the liquid already 
contained between these posts. In this case, θ2=0o is the contact angle of the liquid in contact with 
itself, so that the Cassie-Baxter equation gives, 
 

 ( )ses
l
CB ϕθϕθ −+= 1coscos  (11) 

 
The resulting contact angle for the droplet is lower than it would be simply on the solid surface. 
Equation 11 also allows the condition for a liquid not to hemi-wick (eq. 9) to be stated in terms of 
Wenzel’s equation as, 
 

 l
CBW θθ coscos <  (12) 

 
For Young’s law contact angles less than 90o this implies that the Wenzel contact angle needs to 
be larger than the contact angle predicted for a droplet on the composite surface of the solid with 
liquid between the surface features. 
 
2.4 Maximal droplet thickness 

 One aspect of static wetting that does not appear to have been commented upon in the 
recent literature is the effect of topography on large droplets (rc>>κ-1). In this case, the droplet 
becomes flattened due to gravity and the shape is a thick puddle of thickness hc (Fig. 4) [14-16].  

 

 

 

The balance of horizontal forces on a rough surface then gives, 
 

Figure 4  Equilibrium shapes of a) small droplets (rc<<κ -1) and b) large puddles (rc>>κ -1). 
After ref. 15. 



 
2

2
c

SLsLVSVs
gh

rr
ργγγ −+=  (13) 

 
where the last term is from the hydrostatic pressure integrated over the thickness ho. Using 
Wenzel’s equation we find, 
 

 ( ) WWch θκθκ 11 2sin2 −− ≈=  (14) 

 
where the final approximation is in the limit of small Wenzel angles. Thus, Wenzel’s equation for 
Young’s law contact angles less than 90o implies that in the limit of large droplet volumes the 
maximal droplet height is reduced. For a Cassie-Baxter composite surface composed of the liquid 
and the solid, our expectation is that  
 

 ( ) l
CB

l
CBch θκθκ 11 2sin2 −− ≈=  (15) 

 
Since volume must be conserved, a rough (or a composite solid-liquid) surface should cause a 
droplet possessing θe<90o to adopt a thinner pancake shape with a larger lateral extent than it 
would on a flat and smooth solid surface of the same material. Effectively, Wenzel roughness 
results in stronger spreading tendencies and the condition rc∼κ-1 is no longer sufficient to define 
the cross-over from the gravity regime to the capillary regime, which now is expected to occur at 
larger sizes. It is unclear what the cross-over condition should be, but one possibility suggested 
by eq. (13) is rc∼rsκ-1. 
 

The surface free energy approach outlined in this section assumes that the wetting of the 
surface does not follow the symmetries of its small scale structure, but is an average effect around 
the contact perimeter which remains circular. However, droplets on textured surfaces do under 
some circumstances adopt the symmetries of the underlying lattice with coordinated movements 
of contact lines leading to faceted droplets; the assumption of a circular contact perimeter is 
therefore quite coarse [39]. Our approach also ignores the difference between the theoretical 
Young’s law contact angle and the experimentally observed advancing and receding contact 
angles. However, in our opinion it is nonetheless a useful view in providing some underlying 
guiding principles. 

3. Topography and Spreading 

3.1 Rate of Change of Surface Free Energy 

Our previous considerations on the influence of topography on wetting statics shows that 
under some circumstances the final contact angle can be lower than predicted by Young’s law 
(topography driven spreading) and that droplets that only partially spread on a smooth and flat 
surface may spread completely and not reach an equilibrium droplet shape at all (topography 
driven wetting). The same considerations also suggest that the rate of change of surface free 
energy occurring at the contact line, and hence wetting dynamics, will be modified by 
topography. For example, if a contact line advances over a rough surface, but at all locations 
retains contact with the solid (the Wenzel situation), the surface free energy change is, 
∆F(x)=[rs(x)(γSL – γSV)+γLV cosθ]∆Ap(x). Assuming the droplet remains axially symmetric so that 
∆A(x)=2π∆rc, where rc is the planar contact radius, and defining a radial edge speed as ve=drc/dt, 



the rate of change of surface free energy with respect to time is given as, 
 

 ( ) eWLVc vrxF θθγπ coscos2)( −=&  (16) 

 
where the combination of interfacial tensions has been replaced using Wenzel’s equation. This 
assumes that hemi-wicking has not occurred in advance of the droplet edge (i.e. the droplet 
spreads on a dry surface). Similarly, on a surface with two types of surface chemistry represented 
by Young’s law contact angles of θ1 and θ2, and with surface fractions ϕ1 and ϕ2, the rate of 
change of surface free energy is, 
 

 ( ) eLVc vrxF 2211 coscoscos2)( θϕθϕθγπ −−=&  (17) 

 
In the special case that the composite surface involves a solid of surface fraction ϕs and Young’s 
law contact angle of θs with the dry solid separated by gaps already filled by the liquid, so that 
the liquid surface fraction is (1-ϕs), eq. (17) becomes, 
 

 ( ) e
l
CBLVc vrxF θθγπ coscos2)( −=&  (18) 

 
where cosθ lCB is defined by eq. (11). 
 

An alternative view of eq. (16)-(18) is to regard the contact line on a textured surface as 
subject to an effective out-of-balance force per unit length of contact line of γLV(cosθ -cosθT), 
where θT is either the Wenzel contact angle, θW, or the Cassie-Baxter contact angle, θ l

CB, for a 
composite solid-liquid surface and is determined by the surface topography. Thus, we might 
expect that not only would the final equilibrium contact angle be lower, but the rate at which a 
droplet evolves to that state would be faster due to a larger effective spreading force induced by 
the topography. However, what is not taken into account in these considerations is how the 
opposition to spreading is modified by the topography. Spreading involves a flow and any strong 
roughness or surface texture could significantly alter the flow pattern, thus modifying the viscous 
dissipation. Alternatively, if we consider the motion of the contact line to arise from the balance 
between adsorption and desorption of molecules, changes in solid surface area could modify the 
balance between these processes. The net effect of surface topography on wetting dynamics is, 
therefore, far from obvious, but this type of approach does enable some of the possible factors to 
be identified and discussed. 
 
3.2 Hydrodynamics 

In cylindrical coordinates (r,φ, z) and assuming axial symmetry, the rate of dissipation of 
energy in a spreading fluid is given by, 
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where the integral is over the fluid volume and vr and vz are the radial and axial velocity 



components and the velocity field also satisfies the continuity equation [40]. Given a velocity 
field for the fluid it is then possible to evaluate the rate of energy dissipation in the flow of the 
fluid and equate it to the rate of change of surface free energy. 
  
3.2.1 Dimensional Analysis 

McHale et al have argued that a simple estimate of the rate of energy dissipation on a flat and 
smooth surface can be obtained by considering the characteristic dimensions in eq. (19) [11].  
This suggests that for a small spherical cap shaped droplet the dominant terms in the integrand of 
eq. (19) are those of the form ve

2rc
2/hc, corresponding to the term involving (∂vr/∂z)2, where rc is 

the radius of the droplet and hc is maximal height of the droplet. For a spherical cap shape 
hc/rc=tan(θ/2) and so the expected form of the dissipation was suggested to be of the form, 
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k
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where k is a constant dependent on the choice of the fluid velocity field and the geometry over 
which dissipation occurs. It seems plausible that the constant k would also depend on the surface 
roughness and/or the solid surface fraction and so we can write k=k(rs,ϕs); whether or not this 
might also introduce a weak dependence on the Young’s law equilibrium or the dynamic contact 
angles is not clear in this approach. To obtain the edge speed we now equate eq. (16) or eq. (18) 
with eq. (20), 
 

 ( ) ( )( ) ( )2tancos,cos, * θθϕθϕ −= ssTsse rvrkv  (21) 

 
where θT (rs,ϕs) is either the Wenzel contact angle, θW, or the Cassie-Baxter contact angle, θ l

CB, 
for a composite solid-liquid surface. For the Wenzel case, using a small angle expansion then 
gives, 
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whereas the composite solid-liquid case gives, 
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1 22* +−≈ θθϕθϕ esse vkv  (23) 

 
When the roughness vanishes (rs→1) or the solid surface fraction tends to 100% (ϕs→1), eq. (22) 
and eq. (23) tend to the Hoffman-de Gennes cubic type form for the relationship between edge 
speed and dynamic contact angle. However, if there is roughness (rs>1) then eq. (22) implies that 
a linear term in dynamic contact angle will become apparent. In the case of composite 
solid-liquid surface with most of the surface filled by the liquid (ϕs→0), eq. (23) implies that 
dependence on the equilibrium contact angle vanishes and a cubic relationship, similar to 
spreading on a complete wetting surface, will become apparent. 
 

There are some strong assumptions in this type of approach to describing dynamic 
wetting. For example, it has been assumed that hemi-wicking either does not occur or that the 



contribution it makes to the dissipation is small. If this were not the case, terms of the form 
(∂vr/∂r)2 could become important. Physically this might be indicated by a droplet centred on a far 
wider film of liquid within the texture of the substrate. The dynamics for imbibition into a 
textured surface composed of a forest of micropillars by a film (i.e. pure hemi-wicking) have 
been described by Ishino et al. [41]. Another case might be where the droplet no longer maintains 
an axially symmetric shape, but becomes influenced by the underlying symmetry of the texture of 
the surface. 
 
3.2.2 Dissipation in a Wedge 

Motivated by an analysis of flow patterns in a simple wedge advancing at a constant velocity and 
contact angle [42], de Gennes et al. derived a formula for viscous dissipation [1, 6, 43]. In the 
simplest approach, he assumed that Poiseuille flow occurs within a macroscopic wedge shaped 
region extending from xo to x1 (Fig. 5a).  
 

 
 

 
 
The liquid velocity field is then, 
 

 

















−








=

)(
2

)(
),(

xh

z

xh

z
vzxv ex  (24) 

 
This form of velocity field ensures a no-slip boundary condition at the solid-surface and 
vanishing shear stress at the free liquid surface; it also gives an averaged velocity over the depth, 
h(x), of the fluid of vA=2ve/3. The viscous dissipation in the two-dimensional wedge scaled by the 
perimeter length, 2πrc, is then given by, 
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where L=loge|l/ε| with l=x1-x0 and ε is the truncation length defined in fig. 5a, removes a 
mathematical singularity close to the contact line [1, 7-9, 42]. A similar result including a 
logarithmic cut-off can be derived using a spherical cap shaped droplet with dissipation in a cone 
shaped region inscribed within the droplet although the tanθ factor is replaced by tanθ/2 [11]. For 

Figure 5  a) Hydrodynamic model with Poiseuille flow occurring within a macroscopic 
wedge shaped region close to the contact line, and b) Molecular-Kinetic Theory 
with adsorption and desorption processes. 

 



simple liquids without slippage ε is a molecular cut-off length. A calculation including a slip 
boundary condition allowing the liquid to move with a finite velocity at the solid surface has been 
carried out due to its applicability to polymer melts and the cut-off is then ε =b/θ, where b is the 
slip length and can depend on velocity [1, 44]. The slip length is the distance to the surface at 
which the velocity extrapolates to zero and is formally defined as b=vx/(dvx/dz)z=0. It is possible 
that surface texture would be an alternative mechanism defining the cut-off so that the 
logarithmic factor would depend on the roughness and/or solid surface fraction, i.e. L=L(rs,ϕs). 
Using eq. (16) or eq. (18) and this viscous dissipation in a wedge approach, the edge speed is 
given by, 
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which is similar to eq. (21) apart from the presence of the half-angle in the tan() factor. To match 
eq. (26) to eq. (21) in the small angle approximation, an effective k(rs,ϕs)=3/(2L(rs,ϕs)) can be 
defined. Using the alternative approach of a cone inscribed within a spherical cap to estimate 
viscous dissipation results in a tan(θ/2) dependence and this gives an edge speed-dynamic contact 
angle relationship with good accuracy for larger contact angles [11]. The implication of eq. (26) 
is that because for any given texture the cut-off function is a constant in dynamic contact angle, 
eq. (22) and eq. (23) predict the dependence of edge speed on dynamic contact angle (in the small  
angle approximation). Because the contact angle dependence is through a product of cosθ that 
expands in even powers and tanθ that expands in odd powers, the first order term in a small angle 
expansion is accurate to within 10% even at contact angles as high as 45o. 
 
3.2.3 Gravity Regime 

To estimate what might happen in the limit of a large puddle (rc>>κ-1), we first follow 
Brochard-Wyart et al.’s argument for dissipation controlled by the bulk [15]. The gain of 
gravitational energy is, 
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where Ω is the volume of liquid. Using a radial velocity field v(r)=(r/rc)ve , they argued that the 
bulk dissipation is, 
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and then imposing mass conservation using the approximation for the volume of Ω≅απrc

2hc, 
where α is a constant of order unity, found, 
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Since surface roughness and solid surface fraction would not alter eq. (27) and for large drops the 



radial velocity field would not change, eq. (29) would appear to remain valid. Since it does not 
involve changes due to surface topography, it is not obvious from this approximate approach how 
surface topography changes the rate of spreading of a large droplet if its spreading is controlled 
by the bulk dissipation. 
 
3.2.4 Molecular Kinetic Theory 

An alternative to the hydrodynamic model is one based on the adsorption and desorption 
of molecules in a microscopic region close to the contact line [17-19]. In this molecular-kinetic 
model due to Blake and Haynes [17], it was suggested that the contact line motion is due to a 
stress-modified activated rate process. In equilibrium with no contact line motion, molecules are 
in constant motion jumping from one adsorption site on the substrate to another over average 
distances of λ at a typical frequency of Ko∝exp(-W/kBT), where W is an activation energy and kBT 
is the Boltzmann thermal energy (Fig. 5b); in general it is assumed that λ∼1/n1/2 where n is the 
number of adsorption sites per unit area. Out of equilibrium, molecules jump forward and 
backward with different frequencies K+ and K- resulting in a contact line velocity of ve=λ(K+ - K-). 
Due to the shear stress, the energy barriers to molecular motion are lowered by w/2n in the 
forward direction and raised by w/2n in the reverse direction, where w is the work done by the 
shear stress per unit displacement of unit length of the contact line. The contact line velocity due 
to the difference in jump frequencies is then, 
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On a smooth and flat surface, the model assumes that the shear stress driving the contact line 
motion is the out-of-balance interfacial tension force γLV (cosθe–cosθ), thus giving, 
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Equation (31) suggests ve∝(θ2-θe

2) in the small angle limit and so does not reduce to the 
cubic-type Hoffman-de Gennes form, although it has often been found to fit experimental data for 
simple liquids reasonably well providing the molecular parameters are chosen suitably [19, 45]. 
As noted by de Ruijter et al. [46], when the argument of the exponential is small, ve is directly 
proportional to the driving force γLV(cosθe–cosθ)≈γLV(θ2-θe

2)/2 with a constant of proportionality 
of ζo

-1=nkBT/Koλ=kBT/Koλ3 which can be interpreted as a friction co-efficient per unit length of 
the contact line. 
 

The molecular-kinetic model offers an alternative to the hydrodynamic model and 
includes molecular parameters whose values are expected to be of the order of λ∼1 nm and 
Ko∼106 s-1 for viscous flow of simple liquids. However, it is far from clear how surface 
topography or surface heterogeneity would modify the molecular-kinetic model and few authors 
appear to have considered this problem. Petrov et al. considered how the model might be 
modified to account for wetting dynamics on a smooth heterogeneous surface composed of two 
types of surface chemistry and obtained a formula involving two terms of the form of eq. (31) 
[47]. However, such a formula does not transparently account for the net shear-stress arising from 
the out-of-balance interfacial tension force involving the Wenzel or Cassie-Baxter contact angle. 



In our opinion, an intuitive approach would be to assume that both the equilibrium jump 
frequency Ko and the number of adsorption sites per unit area n (and hence the average distance 
of λ ∼1/n1/2 between jumps) depend on the surface texture, i.e. Ko=Ko(rs, ϕs), n=n(rs, ϕs) and 
λ=λ(rs, ϕs). It seems possible that these parameters could depend on the Young’s law contact 
angle, but less likely that there would be a strong dependence on the dynamic contact angle. The 
shear-stress activation of the contact line motion would involve the observed equilibrium contact 
angle (i.e. either the Wenzel or Cassie-Baxter contact angle) and this would result in a 
modification of the edge speed to, 
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A consequence of eq. (32) is that if a Wenzel roughness effect is assumed and the argument of 
the exponential and the cosine’s expanded, the edge speed then becomes, 
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which has a constant first term. Effectively, the friction coefficient becomes part of a driving 
force term and so causes a topography driven wetting. It is also possible to use a molecular 
kinetic theory approach to address the question of a slip boundary condition, although this is not 
addressed in this current report [48].  
 

One of the conclusions from the original Molecular Kinetic Theory (eq. (31)) was the 
prediction for forced wetting of maximum and minimum velocities corresponding to dynamic 
contact angles of 180o and zero, respectively. Above the maximum velocity, air entrainment is 
predicted and this effect is observed experimentally at high coating speeds [18]. Equation (32) 
also predicts a maximum velocity for wetting the surface given by, 
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and a maximum for dewetting the surface of, 
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Assuming a Wenzel roughness with a Young’s law contact angle less than 90o, eq. (34) implies 
higher coating speeds would be possible providing the liquid retained contact with the surface 
features and did not convert to a Cassie-Baxter solid-air type situation as coating speed increased. 

4. Power Laws in Dynamic Wetting 

4.1 Spherical Cap Droplet 

A classic experiment demonstrating the cubic dependence on contact angle of the edge speed is 



the spreading of a small droplet of polydimethylsiloxane (PDMS) oil on a glass or a silicon 
substrate [2, 10]. PDMS has a wide range of viscosities with relatively constant density (ρ∼9.71 
kg m-3) and surface tension (γLV ∼20 mN m-1) so allowing the capillary length to be kept constant 
(∼1.4 mm) whilst varying the characteristic speed over many orders of magnitude. Moreover, 
because PDMS is non-volatile, its volume, Ω, is conserved and because the equilibrium contact 
angle, θe, vanishes, it is possible to solve ve=ve(θ) and obtain power law dependencies in time for 
various geometric parameters. For a spherical cap shape, the defining equations for the geometry 
are, 
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where, 
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Using small angle expansions for the spherical cap allows the geometric parameters to be written 
as, 
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and so the edge speed, ve=drc/dt is given by, 
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Considering the small angle expansions given by eq. (22) and eq. (23) and defining α(rs) to have 
the value of ¼ or (rs-1)/2 accordingly, we can write the topography modified edge speed as, 
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where the exponent, p, depends on the surface topography. Combining with eq. (39) and solving 
gives the power law dependence, 
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where to is a constant of integration. In the small angle approximation, eq. (38) implies 
rc∝Ω1/3θ -1/3, hc∝Ω1/3θ 2/3 and R∝Ω1/3θ -4/3, so that if ve∝θ p, the power laws of the geometric 
parameters with time are, 
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When the surface is both flat and smooth or a Cassie-Baxter composite solid-liquid surface so 
that p=3, the exponents are -3/10, 1/10, -1/5 and 4/10, respectively. If the surface is rough, and 
the edge velocity tends to linear in contact angle (i.e. towards p=1), the expectation is that these 
exponents will tend towards -3/4, 1/4, -1/2 and 1, respectively [33]. As discussed in section 2 on 
static wetting, there are some strong assumptions including maintenance of an axially symmetric 
droplet shape, absence of hemi-wicking and a lack of dynamic contact angle dependence entering 
into the cut-off for the viscous dissipation, L(rs,ϕs). 

 

 

 
 

One systematic experimental study on the influence on the spreading of droplets due to a 
variation in height of micro-posts arranged in a lattice on a surface has been reported in the 
literature [34, 35]. In that study the surface was composed of circular SU-8 polymer micro-posts 
of diameter 15 µm arranged in a square array with post-to-post separation of 30 µm. Each surface 
had a uniform height set of micro-posts with the maximum height used being 70 µm. On the 
surface with the tallest micro-posts, droplets of water balled up and were observed to be in the 
suspended Cassie-Baxter solid-air state, thus demonstrating that the surface topography had a 
major effect on static wetting by water. The spreading experiments were conducted used video 
profilometry of droplets of 10 000 cSt PDMS oil of initial volume ∼ 1 µl. Droplets were observed 
to spread with well-defined dynamic contact angles from over 70o down to around 30o before 
entering a phase of spreading in which the dominant process was imbibition within the surface 
texture. Figure 6a shows an example of the change in contact angle with time over this initial 
spreading period. The lower curve in fig 6a shows the change in volume as estimated from the 
droplet profile. The constant volume in the initial period supports the view that in the initial 
stages droplet spreading dominates; the upper solid curve shows a fit to θ=B(t+to)

-n over this 
initial constant volume period. The edge speed was also estimated from the droplet profiles and 
fitted to ve=D(t+to)

p. Figure 6b shows the change in the exponents n and p as the height of the 
micro-posts was increased. The exponent n changes from 3/10 towards 3/4 and the exponent p 
changes from 3 towards 1, consistent with eq. (42) based on spreading drive by a Wenzel 
roughness. 

Figure 6  a) A log-log plot of the dynamic contact angle and time with a fit of θ∝1/(t+to)
0.614 for the spreading 

of a 10000 cSt viscosity polydimethylosiloxane droplet on an SU-8 textured surface with 15 µm 
diameter pillars of height 45 µm and lattice parameter 30 µm; the percentage change in drop volume 
is also shown (lower curve and right-hand axis). b) Exponents p and n extracted from the edge 
speed-dynamic contact angle data (×××, left axis) and dynamic contact angle-time (ooo, right axis) 
with increasing pillar height.  (Reprinted fig. 3 and fig. 4 from ref. 34. Copyright the American 
Physical Society 2004). 



 
4.2 Large Droplets/Puddles 

When the droplet size becomes much greater than the capillary length, the droplet 
becomes flattened into a puddle and when the spreading is controlled by dissipation in the bulk 
the edge speed is proportional to rc

-7, which appears to be independent of surface topography. The 
puddle radius, rc, should then follow a (t+to)

1/8 power law in time with a puddle thickness 
following hc∝(t+to)

-1/4. Neither the prediction in section 2.4 of surface roughness influence on the 
maximal droplet thickness, nor the prediction that the edge speed will be independent of 
thickness for large puddles, appear to have been tested experimentally. 
 
4.3 Small Stripes of Liquids 

An alternative to experiments using axially symmetric droplets is to perform liquid 
spreading using a stripe shape with a circular arc cross-section [12]. For a stripe with 
cross-section much less than the capillary length, the geometry can be defined using a circular 
radius R, a maximal height hc, and a contact width 2rc. The defining equations for this geometry 
are then, 
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where A is the area of the circular cap, which for the spreading of a non-volatile liquid is a 
constant. Using small angle expansions allows the geometric parameters to be written as, 
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so that the edge speed, ve=drc/dt is given by, 
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Using the topography modified edge speed relation given by eq. (40), i.e. ve∝θ p, and solving 
gives the power law dependence, 
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In the small angle approximation, eq. (44) implies rc∝A1/2θ -1/2, hc∝A1/2θ 1/2 and R∝A1/2θ -3/2, and 
so that if ve∝θ p, the power laws of the geometric parameters with time are, 
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When the surface is both flat and smooth or a Cassie-Baxter composite solid-liquid surface so 
that p=3, the exponents are -2/7, 1/7, -1/7 and 3/7, respectively. If the surface is rough, and the 
edge velocity tends to linear in contact angle (i.e. towards p=1), the expectation is that these 
exponents will tend towards -2/3, 1/3, -1/3 and 1, respectively. These predictions, which may 
have implications for printing on rough surfaces [13], have not been experimentally tested. 
 
4.4 Approach to Equilibrium of a Droplet 

In section 4.1 the effect of surface texture on power law spreading for small droplets completely 
wetting the surface was considered. In the case that a droplet spreads maintaining its volume 
constant, but the eventual equilibrium remains a droplet, we can show that an exponential 
approach to equilibrium would be expected. The edge speed obtained from eq. (36) can be 
written as, 
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where the function G(θ) is defined by the spherical cap shape as, 
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We now choose the hydrodynamic model for viscous dissipation and use eq. (26) with eq. (48) to 
obtain, 
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We could also have used the result of the dimensional analysis for the viscous dissipation (i.e. eq. 
(21)) and this would result in (3tanθ)/4L being replaced by ktan(θ/2). When the dynamic contact 
angle, θ, is approaching the observed equilibrium contact angle, θT, we can re-write eq. (50) 
using the variable u=θ- θT, 
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which to first order in u is, 
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This can be solved to give an exponential approach to equilibrium with, 
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where to is a constant of integration and τ  is a time constant given by, 
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Assuming that the texture effect is a Wenzel roughness one (i..e. cosθT=rscosθe), this time 
constant will always decrease as roughness increases provided the Young’s law contact angle, θe, 
is below around 48.3o. In this case, the approach to the equilibrium Wenzel contact angle will be 
faster due to the roughness than the approach to the Young’s law contact angle would be on a flat 
and smooth surface. However, above the value θe=48.3o, eq. (54) predicts that the time constant 
will initially increase as roughness increases before decreasing towards zero at larger levels of 
roughness. 

5. Conclusions 

In this work we have considered how topographic amplification of the affects of surface 
chemistry on static wetting also results in modification of dynamic wetting. In the case of a 
Wenzel rough surface with a Young’s law contact angle less than 90o and a Cassie-Baxter 
composite solid-liquid surface the topography results in a large spreading power. This can result 
in droplets spreading more rapidly and, in some cases, becoming completely spread even though 
they would only partially wet a flat and smooth surface of the same surface chemistry. We have 
discussed how the topography causes an increased out-of-balance surface tension force, which 
drives this increase in spreading rate. This effect has been summarized in simple terms by a 
modified Hoffman-de Gennes relationship between the edge speed and the dynamic and 
equilibrium contact angles. In the case of the complete spreading of small non-volatile droplets 
and stripes of liquid, simple power law changes of the geometric parameters are predicted. 
Whereas, in the case of partial wetting on surface, topography results in an exponential approach 
to equilibrium with a time constant dependent on the surface structure. 
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