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Abstract

The spreading of a droplet of a liquid on a smosthd surface is often described by the
Hoffman-de Gennes law, which relates the edge spgdd the dynamic and equilibrium contact
angles @ and 4. by ve D& -87 ). When the liquid wets the surface completely ahe
equilibrium contact angle vanishes, the edge spequoportional to the cube of the dynamic
contact angle. When the droplets are non-volaltig kaw gives rise to simple power laws with
time for the contact angle and other parameterboithh the capillary and gravity dominated
regimes. On a textured surface the equilibriumestédita droplet is strongly modified due to the
amplification of the surface chemistry induced &mdes by the topography. The most common
example is the conversion of hydrophobicity intpesnydrophobicity. However, when the
surface chemistry favors partial wetting, topogsapan result in a droplet spreading completely.
A further, frequently over-looked consequence gbography is that the rate at which an
out-of-equilibrium droplet spreads should also kalified. In this report, we review ideas related
to the idea of topography induced wetting and aershow this may relate to dynamic wetting
and the rate of droplet spreading. We consideretiiect of the Wenzel and Cassie-Baxter
equations on the driving forces and discuss howetimeay modify power-laws for spreading. We
relate the ideas to both the hydrodynamic viscdssightion model and the molecular-kinetic
theory of spreading. This suggests roughness aldl sarface fraction modified Hoffman-de
Gennes laws relating the edge speed to the dynamdcequilibrium contact angle. We also
consider the spreading of small droplets and strgdenon-volatile liquids in the capillary regime
and large droplets in the gravity regime. In theecaf small non-volatile droplets spreading
completely, a roughness modified Tanner’s law gjuine dependence of dynamic contact angle
on time is presented. We review existing data foe tspreading of small droplets of
polydimethylsiloxane oil on surfaces decorated witltro-posts. On these surfaces, the initial
droplet spreads with an approximately constant melu and the edge speed-dynamic contact
angle relationship follows a power law18®. As the surface texture becomes stronger the
exponent fronp=3 towardsp=1 in agreement with a Wenzel roughness drivenasiimg and a
roughness modified Hoffman-de Genne’s power lamaly, we suggest that when a droplet
spreads to a final partial wetting state on a rosigtiace, it approaches its Wenzel equilibrium
contact angle in an exponential manner with a torestant dependent on roughness.
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1. Introduction

A droplet deposited onto a solid substrate willidgpadopt a shape determined by the
forces due to surface tension and gravity. At d@guum at the contact line it will also locally
obey Young's law, ca&=()ev — Ja)/ uv, whereé: is the equilibrium contact angle and tjjeare
the interfacial tensions between the solid, ligamdl vapor interfaces [1,2]. However, when first
deposited, a droplet is far from equilibrium andts® contact angle has a dynamic vaflierhich
evolves with timef. On a smooth and flat surface the characteripged at which this evolution
occurs is given bw =y\/n7 wherey is the viscosity of the liquid; this suggests difg a
non-dimensional capillary numb€a=vy/v . Indeed, from studies of silicone oils displacaigin
glass capillaries Hoffman had suggested that fanptete wetting systems witl&=0° the
dynamic contact angle was a universal functionhef ¢apillary number [3,4] and Voinov had
shown thatdJCa'® could fit the low velocity data [5]. In the casé @ small droplet of
characteristic size less than the capillary lengths(jviog)Y? where p is the density of the
liquid andg=9.81 m & is the acceleration due to gravity, the associatetacteristic time for
spreading i =«*/v. A simple view of spreading of a small droplettiat the driving force per
unit length of contact line is given by the outhaftance surface tension and gravity forces
described byyy (cos9—cos), and the spreading is resisted by viscous forteg/ & [6]. This
hydrodynamic approach immediately suggestsuiiat &cosf—cosd), which in the small angle
approximation gives the Hoffman-de Gennes lall &6-8?). The simplicity of this result
conceals the fact that a no-slip boundary conditiotie fluid mechanics of the problem leads to
a force singularity [7-9].

A particularly simple experimental situation is tkpreading of a small droplet of a
non-volatile liquid on a surface it completely wetésing the assumption of a small droplet
spreading with a spherical cap shape and constdunine, the Hoffman-de Gennes law predicts a
simple power law relationship for the dynamic ccntangIeHD(t+to)'3’1° wheret, is a constant
dependent on droplet volume and initial state; thisver law is commonly referred to as
Tanner’s law, after the author who first derivedfibm the Navier-Stokes equations and
experimentally confirmed it for the droplet spreagliproblem [10]. The corresponding power
law for the radiust., of the spherical cap is/A{t+t,)"*°. These power laws have been extensively
investigated experimentally using small dropletpolydimethylsiloxane (PDMS) on silicon and
glass substrates and found to be accurate desasptif the data [1,2]n fact, the small angle
approximation is usually very accurate up to cangagles offl¥0° and can describe data with
contact angles as high as’@fue to the cosine expansion using even powers THi$ type of
approach has also been used to describe the spgeadlismall stripes with circular arc
cross-sections, where a power |&t+t,)?", corresponding to./At+t)*’, was both predicted
and observed [10, 12]; a result of practical imace in screen printing [13]. The hydrodynamic
approaches also predict that the spreading of ldrgelets/puddles of liquids in the gravity
regime will follow a power law of ./At+t,)’® [14-16]. An alternative to the hydrodynamic view
is to model droplet motion on the basis of the gotson and desorption of molecules within the
contact line region [17-19]. In this molecular-Kiletheory (MKT) the driving force remains a
consequence of the out-of-balance interfacial tendiorces y(cosé—cos), although the
Hoffman-de Gennes law is no longer predicted instnall angle limit.

Spreading on smooth surfaces is a well-charactési#aation and one that is accessible to



study using simple droplet experiments. There # a significant body of literature on the
wetting of chemically patterned surfaces (for rexesee [20, 21]). One further question that
naturally arises is how spreading might dependwrfase topography. Surface topography is a
factor in static wetting that has been extensigtldied in recent years particularly because of
the ability of high aspect ratio hydrophobic sugdeatures to cause liquids to bridge between
surface asperities and effectively cause a drofuebe suspended on the surface. These
superhydrophobic surfaces originally came to premoe as self-cleaning and super-water
repellent surfaces [22, 23], but can now be creat#dg a wide range of materials approaches
[24]. Often the behavior of droplets on these sg$ais well-described by the Cassie-Baxter
equation whose fundamental topographic control rpetar is the solid surface fractiog
[25-29]. Less well-studied has been the effect of a rougirdphilic surface to cause droplets to
spread on surfaces on which they would normallynfatroplets. These super-wetting and
hemi-wicking situations are a consequence of Wénegjuation whose controlling topographic
parameter is the surface roughnes$30-32]. In these topographic cases with textigedaces,
the equilibrium contact angled, is no longer that described by Young's law, bsitone
dependent on both the topography and the surfaeenistry, e.g.6/(rs, @s, &). Since at
equilibrium the contact line ceases to move, tlnrdy force for spreading can be expected to be
v (cosfr—cod)) and so itself depend on topography [33]. Our joey work has suggested that
such an effect can have dramatic consequence®fortiie Hoffman-de Gennes and Tanner laws
[34, 35].

In this report, we consider how surface texturehmmter dynamic wetting. We begin by
reviewing basic concepts from the statics of wgtand the Wenzel and Cassie-Baxter equations,
including how this alters the conditions for a \wming contact angle. We then consider how the
topography modified driving force could alter thgdrodynamic model and molecular-kinetic
theory of dynamic wetting. As part of these consatiens, we take a simple dimensional analysis
view to consider spreading of small droplets amgbess driven by capillary forces, and of large
droplets with spreading driven by gravity. Finallye review experiments for topography driven
spreading of PDMS droplets on lithographically proeld arrays of microposts [34, 35].

2. Topography and Static Wetting
2.1 Surface Roughness and Solid Surface Area Fraction

Two of the key concepts relating to topographytatis wetting are surface roughness and
solid surface fraction. Surface roughnessis usually defined as the ratio of actual solidface
area to the planar projection of the solids surfaea. The surface area fractigh, of a solid of
surface chemistry typewith a Young’s law contact anglg is usually defined as the area of that
type divided by the total surface area. Howeveesé¢hsimple definitions can easily lead to
ambiguities and do not emphasize the fact that tdagychange in value across a surface or that,
in terms of droplets, it is their values at thetegt line that determine local equilibrium [36]. By
considering changes in surface free energy locéih@ocontact line it has been shown that the
roughness and solid surface area fractions canebeed as local differential variables in the
proximity of the three-phase contact ling,

re (l() — AAwetted (l()
AAR (X)

whereAA,eted IS @ small change in wetted area that is sampjeal three-phase contact line and
AA, is the planar projection of that change. The cpoading definition of solid surface area

(1)



fraction for a solid of surface types,
#i( = A @
AA7 (X)
whereAA(X) is the change in wetted area of typiat can be sampled by a small three-phase
contact line changAAw(X)=AA1(X)+AAx(X) and the surface has been assumed to be compbsed o
two types. Using these definitions and setting sheface free energy change due to a small

advance at the contact line to zero gives riseotallforms of the Wenzel and Cassie-Baxter
equations (Fig. 1) [36],

cosfy (X) = rs(X) cosbe(X) (3)
costcg (X) = ¢1(X) cosBy(X) + @2 (X) cosb () (4)

where 64(x), &(x) and &(x) each satisfy Young's law and the possibility thhe surface
chemistry (via the interfacial tensions) can vacgyoas a surface has been indicated by the
dependence on locatiox, More complex cases involving both changes inagm@froughness and
surface area fractions could be considered usiagdme approach, but these are not dealt with
in this report.

a) vapor b) vapor
liquid % L A (x)c0s 8 liquid \9\ o Adr(x)eosd

/;] . ?//1 F/% 7 B N R ::H}:Z' 1o
solid > A (x) - solid A4, (x)+Ady(x)

Figurel Changes in interfacial areas as the leading eflgedcoplet advances by a small
area AA(X), across a) a rough surface and b) a compositacguof two types.

2.2 Surface Roughness Induced Wetting

Not all liquids adopt an equilibrium droplet shapgh a well-defined contact angle when
deposited on a smooth and flat solid surface. Imeag@ film of liquid advancing on a solid
surface over a small additional a#®A(x). The advancing liquid replaces a solid-vapor fiaie
with a solid-liquid interface and so changes théase free energy by4 — s )AA(X) and at the
same time the film of liquid has an increase inlisiid-vapor surface area so increasing the
surface free energy by an additiopgJAA (X) (Fig.2a); the overall change in surface free gner
is AFX)=()s. — Jyovtuv)AA(X). If this advance reduces the surface energy tharee will
continue until the surface is entirely wetted. Thhse, condition for complete wetting of a smooth
and flat surface is that the spreading power, tneld asS=()s, -)&.- v ) should be positive.
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Figure2 Changes in interfacial areas as a film of liguidances by a small area across a) a
flat and smooth surface, b) a rough surface arsdogmposite surface of two types
of surface, and d) shows the effect of a liquid adbing within the texture
(hemi-wicking). In cases c) and d) the true areeeliated to the planar projection
of area by AA(X)=r{(x)AAy(X), wherer(x) is the local roughness factor.

When the spreading power is negative, so that azeom equilibrium contact angle exists, the
spreading power can be written&gcosf-1) v by using Young’s law. On a rough surface, the
argument can be repeated, but the roughness falttws the contribution to the surface free
energy change caused by replacing the solid-vayperface by a solid-liquid interface (Fig. 2b).

As a consequence, the condition for complete wgthiecomes thab(r)=r«()sv -)&)-yv should

be positive. When the spreading power is negaseehat a non-zero equilibrium contact angle
exists, the spreading power can be written as,

Sw (rs) = (cosay ~ vy (5)

by using Wenzel's equation (eq. 3).

One immediate consequence of eq. (3) and eq. (Baidiquids that would form partially
wetting droplets with contact angles below® @h a smooth solid surface of a given surface
chemistry will spread further and display lower @t angles and in some cases, these droplets
will not stop spreading and will eventually spreacross the entire surface. Both of these
conclusions have been confirmed experimentally.[BRJure 3 shows the effect on the observed
contact angle of changing the heights of polymelJ-8 photoresist) microposts on a
lithographically surface; the horizontal axis shaws observed contact angle on a smooth and
flat surface of SU-8. These surfaces were compadedquare lattices of 1pm diameter
cylindrical pillars with a 3Qum lattice parameter in a polymer photoresist (ifsgt 3). For
droplets of water, the effect of the surface stiteetis to increase the contact angle due to the
inability of the water to penetrate between the tposhus giving a Cassie-Baxter
superhydrophobic effect. However, for formamide déffiect of surface structure is to reduce the
observed contact angle and for liquids with evemelocontact angles on the flat SU-8, the effect
is to completely spread out and imbibe the ligldr these liquids, topography reinforces the
tendency towards wetting arising from the surfaeenaistry and it can be said to be driving the
spreading.
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Figure3 Contact angles for a range of liquids on a teduSU-8
surface. The inset shows scanning electron micpesanages
of the lithographically structured surfaces showmgquare
lattice of 15 um diameter cylindrical pillars with a 3fm
lattice parameter (view of a field of pillars andlase-up view
of the pillars). (Reprinted fig. 2 from ref. 32. @oight the
Royal Society of Chemistry 2004).

On a composite Cassie-Baxter surface consistinigvofsurface types, the surface free
energy change caused by replacing the solid-vaperface across one period of the surface by a
solid-liquid interface also changes the spreadioggy (Fig. 2c). When the spreading power is
negative, so that a non-zero equilibrium contagieexists, the spreading power can be written
as,

Scg (#1,92) = (cosbcg ~ 1)y (6)

Another situation, called hemi-wicking, can occar which the topography drives a
complete imbibition of a droplet by the surfacethrs case the liquid spreads within the texture
of the surface, but does not cover the tops ofaiperities (Fig. 2d). In the simple case of flat
topped surface features, Quét@l have shown that the condition for the liquid tosaneously
advance within the surface texture is [37, 38],

(rls__jssj(yw ~ya)-yv >0 (")

which can be written as a hemi-wicking spreadinggmo

Srw (rs. bs) = H s~ ¢Sjcosee —1]nv ®)

~¥s

This condition also implies that hemi-wicking wilbnhoccur provided,



1-cos8y
Ps > m )

2.3 Solid-Liquid Composite Surface I nduced Wetting

The Cassie-Baxter equation is commonly used to expltee enhancement of partial
wetting into superhydrophobicity. A simple viewt@simagine a post type surface structure with
a droplet only able to advance across the topsi@fpbsts and bridge across the gaps between
them. Effectively in eq. (4)8.(x) is the Young's law contact anglé, for the solid and»=18C
is the contact angle of the liquid in contact waih At the same time the surface area fraction for
the solid isgs and for the gaps between the posts the areadraisti(1¢s), thus giving,

cosfcp = $5C0SGp — (1_ ¢s) (10)

However, we can also imagine an alternative sibmain which a surface has been subject to
hemi-wicking and a droplet then advances acrossofeof the solid posts and the liquid already
contained between these posts. In this c8s€)’ is the contact angle of the liquid in contact with
itself, so that the Cassie-Baxter equation gives,

cos@'CB = ¢ cosb, +(1- @) (11)

The resulting contact angle for the droplet is lotyem it would be simply on the solid surface.
Equation 11 also allows the condition for a liquat to hemi-wick (eq. 9) to be stated in terms of
Wenzel’s equation as,

cosfy < cosfg (12)

For Young’s law contact angles less thafl ®fs implies that the Wenzel contact angle needs t
be larger than the contact angle predicted foropldt on the composite surface of the solid with
liquid between the surface features.

2.4 Maximal droplet thickness

One aspect of static wetting that does not appediave been commented upon in the
recent literature is the effect of topography oméadroplets >>«"). In this case, the droplet
becomes flattened due to gravity and the shapeh'islapuddle of thickneds; (Fig. 4) [14-16].
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Figure4 Equilibrium shapes of a) small dropletg<kx ™) and b) large puddles &>« ™).
After ref. 15.

The balance of horizontal forces on a rough surflaee gives,
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rsVsv =ViLv *trlsVg — (13)

where the last term is from the hydrostatic pressategrated over the thicknebs Using
Wenzel’s equation we find,

he = 2« sin(8y /2) = k 18y (14)

where the final approximation is in the limit of alinWenzel angles. Thus, Wenzel's equation for
Young’s law contact angles less tharf @@plies that in the limit of large droplet volumése
maximal droplet height is reduced. For a Cassiet@aomposite surface composed of the liquid
and the solid, our expectation is that

he = 2«71 sin(e(':B / 2)= K_lﬁéB (15)

Since volume must be conserved, a rough (or a ceitepsolid-liquid) surface should cause a
droplet possessing.<90° to adopt a thinner pancake shape with a largerdaextent than it
would on a flat and smooth solid surface of the esanaterial. Effectively, Wenzel roughness
results in stronger spreading tendencies and thditbon r.Ck™ is no longer sufficient to define
the cross-over from the gravity regime to the dapjilregime, which now is expected to occur at
larger sizes. It is unclear what the cross-ovedian should be, but one possibility suggested
by eq. (13) is [Tk ™.

The surface free energy approach outlined in thitsien assumes that the wetting of the
surface does not follow the symmetries of its sreedlle structure, but is an average effect around
the contact perimeter which remains circular. Hosvewdroplets on textured surfaces do under
some circumstances adopt the symmetries of therlymdg lattice with coordinated movements
of contact lines leading to faceted droplets; tBsuanption of a circular contact perimeter is
therefore quite coarse [39]. Our approach also rgmdhe difference between the theoretical
Young's law contact angle and the experimentallgesbed advancing and receding contact
angles. However, in our opinion it is nonethelesssaful view in providing some underlying
guiding principles.

3. Topography and Spreading
3.1 Rate of Change of Surface Free Energy

Our previous considerations on the influence obgrpphy on wetting statics shows that
under some circumstances the final contact angiebealower than predicted by Young's law
(topography driven spreading) and that droplet$ ¢imdy partially spread on a smooth and flat
surface may spread completely and not reach ariguin droplet shape at all (topography
driven wetting). The same considerations also sstgtiet the rate of change of surface free
energy occurring at the contact line, and hencetingetdynamics, will be modified by
topography. For example, if a contact line advarmes a rough surface, but at all locations
retains contact with the solid (the Wenzel situatiothe surface free energy change is,
AFX)=[rs(X)(ya. — yv)+ v CosAAAL(X). Assuming the droplet remains axially symmetoctisat
AA(X)=21Ar¢, Wherer is the planar contact radius, and defining a tastlge speed ag=dr/dt,



the rate of change of surface free energy witheetsip time is given as,

F(x) = 271y (cos8 - cosy Ve (16)

where the combination of interfacial tensions hasrbreplaced using Wenzel’'s equation. This
assumes that hemi-wicking has not occurred in azbvaf the droplet edge (i.e. the droplet
spreads on a dry surface). Similarly, on a surfaitie two types of surface chemistry represented
by Young's law contact angles @& and &, and with surface fractiong, and ¢,, the rate of
change of surface free energy is,

F(X) = 271y y (coS8 - g1 cos) — ¢, cosb e (17)

In the special case that the composite surfacdvasa solid of surface fractiops and Young'’s
law contact angle of; with the dry solid separated by gaps alreadydilby the liquid, so that
the liquid surface fraction is (gs), eq. (17) becomes,

F(X) = 271c) v (cose - cosﬂ(':B )\/e (18)

where co#'cg is defined by eq. (11).

An alternative view of eq. (16)-(18) is to regahe tcontact line on a textured surface as
subject to an effective out-of-balance force peit length of contact line o (cosd-costr),
where & is either the Wenzel contact ang#y, or the Cassie-Baxter contact ang#es, for a
composite solid-liquid surface and is determinedtlyy surface topography. Thus, we might
expect that not only would the final equilibriumntact angle be lower, but the rate at which a
droplet evolves to that state would be faster dua karger effective spreading force induced by
the topography. However, what is not taken intooaot in these considerations is how the
opposition to spreading is modified by the topogsaspreading involves a flow and any strong
roughness or surface texture could significanttgrahe flow pattern, thus modifying the viscous
dissipation. Alternatively, if we consider the nwootiof the contact line to arise from the balance
between adsorption and desorption of moleculesygdmin solid surface area could modify the
balance between these processes. The net effacirfaice topography on wetting dynamics is,
therefore, far from obvious, but this type of amio does enable some of the possible factors to
be identified and discussed.

3.2 Hydrodynamics

In cylindrical coordinatesr(@ z) and assuming axial symmetry, the rate of disgpabf
energy in a spreading fluid is given by,

2
. ov 2 2 2
TS=n | {2 P i s (V_rj + (_OVZ j + {_avr + Nz } dQ (19)
liquid r r 0z 0z or

where the integral is over the fluid volume awdand v, are the radial and axial velocity




components and the velocity field also satisfies ¢bntinuity equation [40]. Given a velocity
field for the fluid it is then possible to evaluatee rate of energy dissipation in the flow of the
fluid and equate it to the rate of change of swflaee energy.

3.2.1 Dimensional Analysis

McHale et al have argued that a simple estimate of the ra&enefgy dissipation on a flat and
smooth surface can be obtained by considering flagacteristic dimensions in eq. (19) [11].
This suggests that for a small spherical cap shdpgalet the dominant terms in the integrand of
eq. (19) are those of the fovfrc?/he, corresponding to the term involvingv{/dz)®, wherer. is
the radius of the droplet art@ is maximal height of the droplet. For a sphericap shape
hJ/rc=tan(@2) and so the expected form of the dissipation suggested to be of the form,

2
~ 27Trc/7Ve (20)

" ktan(g/2)

wherek is a constant dependent on the choice of the flaldcity field and the geometry over
which dissipation occurs. It seems plausible thatdonstank would also depend on the surface
roughness and/or the solid surface fraction andvesaan writek=k(rs,@s); whether or not this
might also introduce a weak dependence on the Ysuag equilibrium or the dynamic contact
angles is not clear in this approach. To obtainetige speed we now equate eq. (16) or eq. (18)
with eq. (20),

Ve = k(rs, ¢V (costr (rs, #5) ~ cosd)tan(6/2) (21)

where 6 (rs @) is either the Wenzel contact angt, or the Cassie-Baxter contact angigs,
for a composite solid-liquid surface. For the Wdnzase, using a small angle expansion then
gives,

VRS % k(r v’ ((rs ~1)+ % (6% - rsej)je +.... (22)
whereas the composite solid-liquid case gives,
1 x
Ve = Z KB (6% - 9s68)0+ .. (23)

When the roughness vanishes{1) or the solid surface fraction tends to 10086(1), eq. (22)
and eq. (23) tend to the Hoffman-de Gennes culpe fgrm for the relationship between edge
speed and dynamic contact angle. However, if tleereughnessr{>1) then eq. (22) implies that
a linear term in dynamic contact angle will becomegparent. In the case of composite
solid-liquid surface with most of the surface filldy the liquid ¢s—0), eq. (23) implies that
dependence on the equilibrium contact angle vasisred a cubic relationship, similar to
spreading on a complete wetting surface, will bee@apparent.

There are some strong assumptions in this typeppfoach to describing dynamic
wetting. For example, it has been assumed that-lnacking either does not occur or that the



contribution it makes to the dissipation is sméllthis were not the case, terms of the form
(0v,/0r)? could become important. Physically this might bai¢ated by a droplet centred on a far
wider film of liquid within the texture of the suibate. The dynamics for imbibition into a
textured surface composed of a forest of microillay a film (i.e. pure hemi-wicking) have
been described by Ishirbal. [41]. Another case might be where the dropletarmér maintains
an axially symmetric shape, but becomes influermethe underlying symmetry of the texture of
the surface.

3.2.2 Dissipation in a Wedge

Motivated by an analysis of flow patterns in a denywedge advancing at a constant velocity and
contact angle [42], de Genneisal. derived a formula for viscous dissipation [1,48). In the
simplest approach, he assumed that Poiseuille flosurs within a macroscopic wedge shaped
region extending from, to x; (Fig. 5a).

olg ’ g i f P

Figure5 a) Hydrodynamic model with Poiseuille flow ocdog within a macroscopic
wedge shaped region close to the contact line,kgnidlolecular-Kinetic Theory
with adsorption and desorption processes.

The liquid velocity field is then,

NEANES
VX(X'Z)_Ve(h(x))(Z (h(x)n 9

This form of velocity field ensures a no-slip boang condition at the solid-surface and
vanishing shear stress at the free liquid surfa@dso gives an averaged velocity over the depth,
h(x), of the fluid ofva=2vJ/3. The viscous dissipation in the two-dimensiomatige scaled by the
perimeter length, &, is then given by,

2
X1 h(X)(%j dzdx = 87p7rcvg|_

TSNedge =2mre [ ] (25)
X, 0 3tand

where L=logg|l/g with I=x;-x9 and € is the truncation length defined in fig. 5a, rem®va
mathematical singularity close to the contact l[tie 7-9, 42]. A similar result including a
logarithmic cut-off can be derived using a spherozgp shaped droplet with dissipation in a cone
shaped region inscribed within the droplet althotightar@factor is replaced by t&? [11]. For



simple liquids without slippage is a molecular cut-off length. A calculation inding a slip
boundary condition allowing the liquid to move wadHinite velocity at the solid surface has been
carried out due to its applicability to polymer tsehnd the cut-off is thea=b/6, whereb is the

slip length and can depend on velocity [1, 44]. Bhp length is the distance to the surface at
which the velocity extrapolates to zero and is fallgndefined as=v,/(dv/d2)~o. It is possible
that surface texture would be an alternative meshandefining the cut-off so that the
logarithmic factor would depend on the roughnes¥/@nsolid surface fraction, i.&.=L(rs,¢s).
Using eq. (16) or eq. (18) and this viscous diggpain a wedge approach, the edge speed is
given by,

*

Ve = —4L(::\s/'¢s) (cos@T (rs,¢5)—cosé?)tan6? (26)
which is similar to eq. (21) apart from the presentthe half-angle in the tan() factor. To match
eg. (26) to eq. (21) in the small angle approxiorgtian effectivek(rs,@)=3/(2(rs,¢s)) can be
defined. Using the alternative approach of a carseribed within a spherical cap to estimate
viscous dissipation results in a t&#) dependence and this gives an edge speed-dymcamntact
angle relationship with good accuracy for largentaot angles [11]The implication of eq. (26)

is that because for any given texture the cutafiction is a constant in dynamic contact angle,
eg. (22) and eq. (23) predict the dependence af sgged on dynamic contact angle (in the small
angle approximation). Because the contact anglerdmce is through a product of 8dkat
expands in even powers and #dhat expands in odd powers, the first order term small angle
expansion is accurate to within 10% even at coratagtes as high as 45

3.2.3 Gravity Regime

To estimate what might happen in the limit of ay&puddle (z>>«"), we first follow
Brochard-Wyartet al.’'s argument for dissipation controlled by the byli5]. The gain of
gravitational energy is,

=9 =gl /20 (27)

whereQ is the volume of liquid. Using a radial velocitelfl v(r)=(r/rc)ve , they argued that the
bulk dissipation is,

31 c2’7V g
2h;

TSguik = (28)

and then imposing mass conservation using the appation for the volume of20arr2he,
wherea is a constant of order unity, found,

2A3
Ve OV @ i7 (29)
3023 e

Since surface roughness and solid surface fraetarid not alter eq. (27) and for large drops the



radial velocity field would not change, eq. (29)ua appear to remain valid. Since it does not
involve changes due to surface topography, it tsobwious from this approximate approach how
surface topography changes the rate of spreadiaglafge droplet if its spreading is controlled
by the bulk dissipation.

3.2.4 Molecular Kinetic Theory

An alternative to the hydrodynamic model is oneeldasn the adsorption and desorption
of molecules in a microscopic region close to thatact line [17-19]In this molecular-kinetic
model due to Blake and Haynes [17], it was suggdestat the contact line motion is due to a
stress-modified activated rate process. In equulibrwith no contact line motion, molecules are
in constant motion jumping from one adsorption sitethe substrate to another over average
distances ofl at a typical frequency df,Lexp(MW/ksT), whereW is an activation energy akgdT
is the Boltzmann thermal energy (Fig. 5b); in gahéris assumed that(ll/n*? wheren is the
number of adsorption sites per unit area. Out afilégium, molecules jump forward and
backward with different frequenci&s. andK. resulting in a contact line velocity af=A(K. - K.).
Due to the shear stress, the energy barriers t@oulalr motion are lowered by/2n in the
forward direction and raised bw/2n in the reverse direction, wheveis the work done by the
shear stress per unit displacement of unit lenfthecontact line. The contact line velocity due
to the difference in jump frequencies is then,

Vo = AK. —K_)=24K, sin 30
€ ( * ) 0 r{anBTj ( )

On a smooth and flat surface, the model assumégshbashear stress driving the contact line
motion is the out-of-balance interfacial tensiorcéoy v (cosg—co9), thus giving,

Vg = 2K, sinH /LY (cos8e — cost) (31)
2nkBT

Equation (31) suggest&a(6-687) in the small angle limit and so does not reduzethe
cubic-type Hoffman-de Gennes form, although it biésn been found to fit experimental data for
simple liquids reasonably well providing the moliecuyparameters are chosen suitably [19, 45].
As noted by de Ruijteet al. [46], when the argument of the exponential is §malis directly
proportional to the driving force v(cosf—cosh)=y (66712 with a constant of proportionality
of Zo'lznkBT/Ko)l:kBT/KO)I3 which can be interpreted as a friction co-effitiper unit length of
the contact line.

The molecular-kinetic model offers an alternative the hydrodynamic model and
includes molecular parameters whose values arectegdo be of the order of(ll nm and
Ko0® s* for viscous flow of simple liquids. However, it f&r from clear how surface
topography or surface heterogeneity would modi#y itiolecular-kinetic model and few authors
appear to have considered this problem. Peatoal. considered how the model might be
modified to account for wetting dynamics on a srhdo¢terogeneous surface composed of two
types of surface chemistry and obtained a formoN@lving two terms of the form of eq. (31)
[47]. However, such a formula does not transpayeatttount for the net shear-stress arising from
the out-of-balance interfacial tension force inwotythe Wenzel or Cassie-Baxter contact angle.



In our opinion, an intuitive approach would be tssame that both the equilibrium jump
frequencyK, and the number of adsorption sites per unit aréend hence the average distance
of A [L/n*? between jumps) depend on the surface textureKi®Kq(rs, @), Nn=n(rs, @) and
A=A(rs, @s). It seems possible that these parameters coyddndeon the Young’s law contact
angle, but less likely that there would be a strdagendence on the dynamic contact angle. The
shear-stress activation of the contact line motwould involve the observed equilibrium contact
angle (i.e. either the Wenzel or Cassie-Baxter amintingle) and this would result in a
modification of the edge speed to,

. o &) - COSO
Ve = 2A(rs,¢s)r<o(rs,¢s)smr{y Lv (ngfjsf;sfk;T co )j (32)

A consequence of eq. (32) is that if a Wenzel roegk effect is assumed and the argument of
the exponential and the cosine’s expanded, the suged then becomes

v, = (’;Aj . -1)+ (62 -r.62)12] (33)

which has a constant first term. Effectively, thmetfon coefficient becomes part of a driving
force term and so causes a topography driven wettinis also possible to use a molecular
kinetic theory approach to address the questicm gip boundary condition, although this is not
addressed in this current report [48].

One of the conclusions from the original Moleculkanetic Theory (eq. (31)) was the
prediction for forced wetting of maximum and minimuelocities corresponding to dynamic
contact angles of 18&and zero, respectively. Above the maximum velgdity entrainment is
predicted and this effect is observed experimentlhigh coating speeds [18]. Equation (32)
also predicts a maximum velocity for wetting theface given by,

Vigo = 2A(rs,¢s)r<o(rs,¢s)sinr(y Ly (c08r (15, fs) ”)j (34)

2n(rs, @s)kpT

and a maximum for dewetting the surface of,

—Vp = 2A(rs,05)Ko (I's, ¢S)Sim{yl_v (1_ e ¢S))J >

2n(rs, @s)kpT

Assuming a Wenzel roughness with a Young’s law acinangle less than 9eq. (34) implies
higher coating speeds would be possible providnggliquid retained contact with the surface
features and did not convert to a Cassie-Baxtéd-sal type situation as coating speed increased.

4. Power Lawsin Dynamic Wetting
4.1 Spherical Cap Droplet
A classic experiment demonstrating the cubic depeoel on contact angle of the edge speed is



the spreading of a small droplet of polydimethgsdne (PDMS) oil on a glass or a silicon
substrate [2, 10]. PDMS has a wide range of visiesswith relatively constant densitp((D.71

kg m*) and surface tension(, (20 mN m') so allowing the capillary length to be kept camst
(.4 mm) whilst varying the characteristic speedravany orders of magnitude. Moreover,
because PDMS is non-volatile, its volunég, is conserved and because the equilibrium contact
angle, &, vanishes, it is possible to solveve(8 and obtain power law dependencies in time for
various geometric parameters. For a spherical bapes the defining equations for the geometry
are,

30 1/3
re = Rsing, he = R(L- cosb), R= (—j (36)
8(6)

where,
B(6) = (L-cosf)? (2+ cosh) (37)

Using small angle expansions for the sphericalatkyvs the geometric parameters to be written

as,
1/3
403 Q6? a3
e =| — : he =| — : R=| — (38)
719 2 %
and so the edge speegsdr/dt is given by,
dr. 1 40 Y3(de
Ve =—==——| — — (39)
dt 3\ 4 dt

Considering the small angle expansions given by2®).and eq. (23) and definirmrs) to have
the value of ¥ orr{-1)/2 accordingly, we can write the topography niediedge speed as,

Ve = a(rs)k(rs, fs)v 6P (40)

where the exponenp, depends on the surface topography. Combining @qth(39) and solving
gives the power law dependence,

3 1 1 40\Y/3 1 \¥/EP+D
g(t){(39+1j(a(rs)k(rs,¢s)v* J(7j ] (t"'toj )

where t, is a constant of integration. In the small angfpraximation, eq. (38) implies
r0QY202 h,0QY20%® and ROQY0™3, so that ifv.8", the power laws of the geometric
parameters with time are,

3/(3p+)

4/(3p+1
60 (t+1) 2P 1 O (+1)YBPD hy O(t+1) 2D RO(+) T (42)



When the surface is both flat and smooth or a @e8akter composite solid-liquid surface so

that p=3, the exponents are -3/10, 1/10, -1/5 and 4/€pactively. If the surface is rough, and

the edge velocity tends to linear in contact arjgée towardsp=1), the expectation is that these

exponents will tend towards -3/4, 1/4, -1/2 andespectively [33]. As discussed in section 2 on
static wetting, there are some strong assumptioeiading maintenance of an axially symmetric

droplet shape, absence of hemi-wicking and a l&dkyomamic contact angle dependence entering
into the cut-off for the viscous dissipatidr(ys, @s).
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Figure6 a) A log-log plot of the dynamic contact anglelaime with a fit of 401/(t+t,)*%* for the spreading
of a 10000 cSt viscosity polydimethylosiloxane dedpon an SU-8 textured surface with i
diameter pillars of height 48m and lattice parameter 30n; the percentage change in drop volume
is also shown (lower curve and right-hand axis).Exponentsp and n extracted from the edge
speed-dynamic contact angle daxxX, left axis) and dynamic contact angle-time (oaghtr axis)
with increasing pillar height. (Reprinted fig. 8dcafig. 4 from ref. 34. Copyright the American
Physical Society 2004).

One systematic experimental study on the influesrcéhe spreading of droplets due to a
variation in height of micro-posts arranged in #dida on a surface has been reported in the
literature [34, 35]. In that study the surface wamposed of circular SU-8 polymer micro-posts
of diameter 15um arranged in a square array with post-to-postragipa of 30um. Each surface
had a uniform height set of micro-posts with thexmmum height used being 7@m. On the
surface with the tallest micro-posts, droplets atev balled up and were observed to be in the
suspended Cassie-Baxter solid-air state, thus demading that the surface topography had a
major effect on static wetting by water. The sphnegexperiments were conducted used video
profilometry of droplets of 10 000 cSt PDMS oilinftial volume[J1 pl. Droplets were observed
to spread with well-defined dynamic contact andtesn over 76 down to around 30before
entering a phase of spreading in which the domipamtess was imbibition within the surface
texture. Figure 6a shows an example of the chamgmmtact angle with time over this initial
spreading period. The lower curve in fig 6a sholes ¢hange in volume as estimated from the
droplet profile. The constant volume in the init@riod supports the view that in the initial
stages droplet spreading dominates; the upper salide shows a fit t&=B(t+t,)" over this
initial constant volume period. The edge speed ass estimated from the droplet profiles and
fitted to ve=D(t+to)". Figure 6b shows the change in the exponerdadp as the height of the
micro-posts was increased. The exponechanges from 3/10 towards 3/4 and the expopent
changes from 3 towards 1, consistent with eq. (@&ed on spreading drive by a Wenzel
roughness.



4.2 Large Droplets/Puddles

When the droplet size becomes much greater thancaipdlary length, the droplet
becomes flattened into a puddle and when the simgasl controlled by dissipation in the bulk
the edge speed is proportionat{d, which appears to be independent of surface tepiyr The
puddle radiusy., should then follow atft,)® power law in time with a puddle thickness
following h.O(t+t,) Y%, Neither the prediction in section 2.4 of surfaseghness influence on the
maximal droplet thickness, nor the prediction ttia¢ edge speed will be independent of
thickness for large puddles, appear to have beedexperimentally.

4.3 Small Stripes of Liquids

An alternative to experiments using axially symrneetiroplets is to perform liquid
spreading using a stripe shape with a circular enmss-section [12].For a stripe with
cross-section much less than the capillary lentia,geometry can be defined using a circular
radiusR, a maximal heighk., and a contact widthr2 The defining equations for this geometry
are then,

A 1/2
r. =Rsing, = R(1-cosb), R=| ——— 43
¢ e ( ) (9—5m9c05¢9] (43)

where A is the area of the circular cap, which for theegging of a non-volatile liquid is a
constant. Using small angle expansions allows #oergtric parameters to be written as,

3A\? 39\ 2 3 )2
e =| — : he =| — : R=|— (44)
20 8 203
so that the edge speegsdrJ/dt is given by,
Cdr, 1 3AV?(d6
Vo= —==——| — — (45)
dt 2| 293 dt

Using the topography modified edge speed relativengby eq. (40), i.eved&P, and solving
gives the power law dependence,

1/272/(2p+D) 2/(2p+1)
o =||— P (3—Aj ( : j (46)
a(rg)k(rs, @s)v 2 t+t,

In the small angle approximation, eq. (44) impligsA*?02 h.O0AY?6Y? andROAY?26%2, and
so that ifveJ 8P, the power laws of the geometric parameters \iitie tare,

60 (t+ty) 2P v Ot +1,)CPY O (t+t,) Y2PH) RO (t+1,)3/2P*D (47)



When the surface is both flat and smooth or a @e8akter composite solid-liquid surface so
that p=3, the exponents are -2/7, 1/7, -1/7 and 3/7 ,eesgely. If the surface is rough, and the
edge velocity tends to linear in contact angle. @iosvardsp=1), the expectation is that these
exponents will tend towards -2/3, 1/3, -1/3 andekpectively. These predictions, which may
have implications for printing on rough surface3][have not been experimentally tested.

4.4 Approach to Equilibrium of a Droplet

In section 4.1 the effect of surface texture on @olaw spreading for small droplets completely
wetting the surface was considered. In the casealdroplet spreads maintaining its volume
constant, but the eventual equilibrium remains apldt, we can show that an exponential
approach to equilibrium would be expected. The esigeed obtained from eq. (36) can be
written as,

Ve = —G(e)(%j (48)

where the functioii(6) is defined by the spherical cap shape as,

_ (303 d[sing] (30)3 1
c0= (7j @{@}(7j @2+ cosd)*/3(1 - cosh)?'3 (49)

We now choose the hydrodynamic model for viscossigation and use eq. (26) with eq. (48) to
obtain,

de) _ [3v | .4 _
(Ej_ [4LJG (6)tan@)[cosr - cost| (50)

We could also have used the result of the dimeasi@malysis for the viscous dissipation (i.e. eq.
(21)) and this would result in (3t&44L being replaced bigtan(@2). When the dynamic contact
angle, 8, is approaching the observed equilibrium contadleg &, we can re-write eq. (50)
using the variable=& &,

(%] = —(%]G_l(ar +u)tan@r +u)[cossy ~costi+6r)] (51)
which to first order iru is,
du — ﬂ* -1
(Ej~ [ 4L}G (6r)cosby (52)

This can be solved to give an exponential approaéguilibrium with,



(t) = Gy +exf-(t +t,)/7] (53)

wheret, is a constant of integration amd is a time constant given by,

*

1/3
r= (ﬂle‘l(er)cosar = (ﬂJ[ij (2+cosr)*3(1-coshr)?3coshy  (54)

*

4L 4L \ 3Q

Assuming that the texture effect is a Wenzel roeglsnone (i..e. cés=ro0sf,), this time
constant will always decrease as roughness inggaegided the Young’'s law contact angfg,

is below around 48°3In this case, the approach to the equilibrium ¥Yé¢contact angle will be
faster due to the roughness than the approacletgdahng’s law contact angle would be on a flat
and smooth surface. However, above the vé&lad8.3, eq. (54) predicts that the time constant
will initially increase as roughness increases teefitecreasing towards zero at larger levels of
roughness.

5. Conclusions

In this work we have considered how topographic ldiogtion of the affects of surface
chemistry on static wetting also results in modificn of dynamic wetting. In the case of a
Wenzel rough surface with a Young's law contactlarigss than 90and a Cassie-Baxter
composite solid-liquid surface the topography rssinl a large spreading power. This can result
in droplets spreading more rapidly and, in somesalsecoming completely spread even though
they would only partially wet a flat and smoothfage of the same surface chemistry. We have
discussed how the topography causes an increadenf-balance surface tension force, which
drives this increase in spreading rate. This effeat been summarized in simple terms by a
modified Hoffman-de Gennes relationship between ¢uge speed and the dynamic and
equilibrium contact angles. In the case of the detepspreading of small non-volatile droplets
and stripes of liquid, simple power law changestiid geometric parameters are predicted.
Whereas, in the case of partial wetting on surfaa@ography results in an exponential approach
to equilibrium with a time constant dependent anghbrface structure.
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